Closure Properties of Regular Languages Lecture 13 Section 4.1

Robb T. Koether

Hampden-Sydney College

Wed, Sep 21, 2016

Robb T. Koether (Hampden-Sydney College) Closure Properties of Regular Languages

Wed, Sep 21, 2016 1 / 28

Outline



- 2 Additional Closure Properties
 - 3 Examples
 - 4 Right Quotients
- 5 Example

э

Outline

Closure Properties of Regular Languages

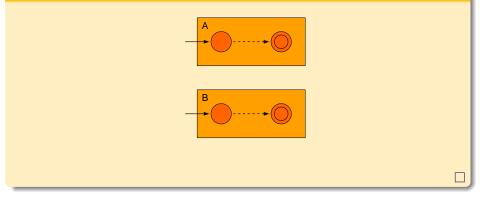
- 2 Additional Closure Properties
- 3 Examples
- A Right Quotients
- 5 Example
- 6 Assignment

э

Theorem (Closure Properties of Regular Languages)

The class of regular languages is closed under the operations of complementation, union, concatenation, and Kleene star.

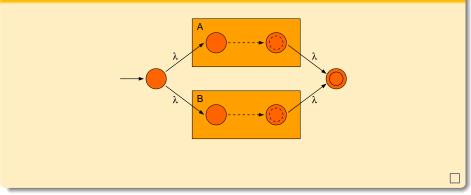
Proof for unions.



æ

590

Proof for unions.

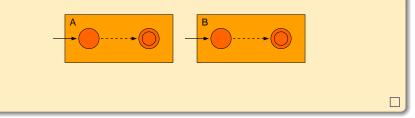


イロト イロト イヨト イヨト

æ

DQC

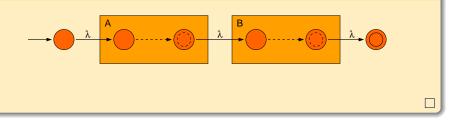
Proof for concatenations.



æ

DQC

Proof for concatenations.



æ

590

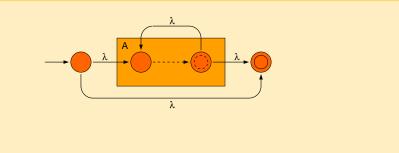
Proof for Kleene star.

æ

DQC

Closure

Proof for Kleene star.

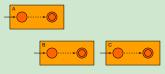


イロト イロト イヨト イヨト

æ

DQC

• A DFA for the language $(A \cup BC)^*$.



イロト イヨト イヨト イヨト

э

590

• A DFA for the language $(A \cup BC)^*$.

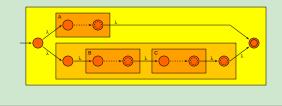


3

590

<ロト < 回ト < 回ト < 回ト

• A DFA for the language $(A \cup BC)^*$.

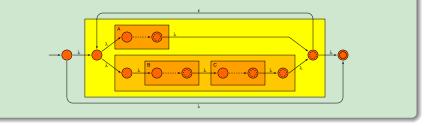


< ロト < 同ト < ヨト < ヨト

э

590

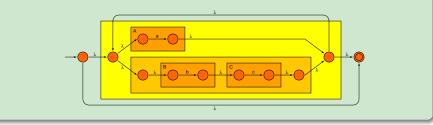
• A DFA for the language $(A \cup BC)^*$.



< ロト < 同ト < ヨト < ヨト

590

• If $A = \{\mathbf{a}\}, B = \{\mathbf{b}\}$, and $C = \{\mathbf{c}\}$, then we have.

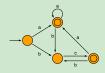


イロト イポト イヨト イヨト

э

590

• The equivalent DFA is.



э

590

<ロト < 回ト < 回ト < 回ト

• This can be minimized to.

Robb T. Koether (Hampden-Sydney College) Closure Properties of Regular Languages

Wed, Sep 21, 2016 17 / 28

э

590

Closure Properties of Regular Languages

2 Additional Closure Properties

3 Examples

4 Right Quotients

5 Example

6 Assignment

3

DQC

Corollary

The set of regular languages is closed under intersection and set difference.

3

Outline

- Closure Properties of Regular Languages
- 2 Additional Closure Properties
- 3 Examples
- 4 Right Quotients
- 5 Example
- 6 Assignment

3

DQC

Example (Intersection)

• Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$ and

 $L_1 = \{w \mid w \text{ contains } \mathbf{aba}\}$ $L_2 = \{w \mid w \text{ contains } \mathbf{bab}\}$

- Design a DFA for $L_1 \cap L_2$.
- Design a DFA for $L_1 L_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Example (Intersection)

- Let $\Sigma = \{ \boldsymbol{a}, \boldsymbol{b} \}$ and
- $L_1 = \{w \mid w \text{ contains } \mathbf{aba}\}$ $L_2 = \{w \mid w \text{ contains } \mathbf{bab}\}$
- Design a DFA for $L_1 \cap L_2$.
- Design a DFA for $L_1 L_2$.
- Design a DFA for $L_1 \cup L_2$.

Outline

- Closure Properties of Regular Languages
- 2 Additional Closure Properties
- 3 Examples
- 4 Right Quotients
- 5 Example
- 6 Assignment

3

DQC

Definition (Right Quotient)

Let L_1 and L_2 be languages on an alphabet Σ . The right quotient of L_1 with L_2 is

$$L_1/L_2 = \{x \mid xy \in L_1 \text{ for some } y \in L_2\}.$$

Theorem

If L_1 and L_2 are regular languages, then L_1/L_2 is regular.

• Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.

Robb T. Koether (Hampden-Sydney College) Closure Properties of Regular Languages

Wed, Sep 21, 2016 24 / 28

3

590

- Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.
- Define $M' = (Q, \Sigma, \delta, q_0, F')$ with F' defined as follows.

3

- Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.
- Define $M' = (Q, \Sigma, \delta, q_0, F')$ with F' defined as follows.
 - For each $q_i \in Q$, let $M_i = (Q, \Sigma, \delta, q_i, F)$.

3

- Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.
- Define $M' = (Q, \Sigma, \delta, q_0, F')$ with F' defined as follows.
 - For each $q_i \in Q$, let $M_i = (Q, \Sigma, \delta, q_i, F)$.
 - Determine whether $L(M_i) \cap L_2 = \emptyset$.

- Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.
- Define $M' = (Q, \Sigma, \delta, q_0, F')$ with F' defined as follows.
 - For each $q_i \in Q$, let $M_i = (Q, \Sigma, \delta, q_i, F)$.
 - Determine whether $L(M_i) \cap L_2 = \emptyset$.
 - If $L(M_i) \cap L_2 \neq \emptyset$, then $q_i \in F'$.

- Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.
- Define $M' = (Q, \Sigma, \delta, q_0, F')$ with F' defined as follows.
 - For each $q_i \in Q$, let $M_i = (Q, \Sigma, \delta, q_i, F)$.
 - Determine whether $L(M_i) \cap L_2 = \emptyset$.
 - If $L(M_i) \cap L_2 \neq \emptyset$, then $q_i \in F'$.
 - If $L(M_i) \cap L_2 = \emptyset$, then $q_i \notin F'$.

- Let $L_1 = L(M)$ and $M = (Q, \Sigma, \delta, q_0, F)$.
- Define $M' = (Q, \Sigma, \delta, q_0, F')$ with F' defined as follows.
 - For each $q_i \in Q$, let $M_i = (Q, \Sigma, \delta, q_i, F)$.
 - Determine whether $L(M_i) \cap L_2 = \emptyset$.
 - If $L(M_i) \cap L_2 \neq \emptyset$, then $q_i \in F'$.
 - If $L(M_i) \cap L_2 = \emptyset$, then $q_i \notin F'$.

- The idea is that
 - *x* goes from q_0 to q_i for some $q_i \in Q$.
 - *y* goes from q_i to q_f for some $q_f \in F$ and $y \in L_2$.

Outline

- Closure Properties of Regular Languages
- 2 Additional Closure Properties
- 3 Examples
- Right Quotients
- 5 Example
- Assignment

3

DQC

Example (Right Quotients)

• Let $\Sigma = \{ \boldsymbol{a}, \boldsymbol{b} \}$ and

$$\begin{split} L_1 &= L(\mathbf{aba}^*)\\ L_2 &= L(\mathbf{b}^*\mathbf{a}) \end{split}$$

That is,

$$L_1 = \{ab, aba, abaa, abaaa, \ldots\}$$

 $L_2 = \{a, ba, bba, bbba, \ldots\}$

• Use the construction in the proof to create a DFA for L_1/L_2 .

э

Outline

- Closure Properties of Regular Languages
- 2 Additional Closure Properties
- 3 Examples
- Right Quotients
- 5 Example

3

DQC

Assignment

- Section 4.1 Exercises 1a, 2, 4, 6b, 11, 12, 14, 16, 20.
- Is the family of regular languages closed under *infinite* union? That is, if L₁, L₂, L₃,... are regular languages, is L₁ ∪ L₂ ∪ L₃ ∪ ··· necessarily a regular language?
- What about infinite intersections of regular languages? Must $L_1 \cap L_2 \cap L_3 \cap \cdots$ be regular?

・ 同 ト ・ ヨ ト ・ ヨ ト